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ABSTRACT: Identifying PSL(2,C) as a projective group for patterns in the
conformal camera model, the projective harmonic analysis on its double covering

group SL(2,C) is presented in the noncompact and compact pictures–the pic-
tures used to study different aspects of irreducible unitary representations of semi-

simple Lie groups. Bypassing technicalities of representation theory, but stress-

ing the motivation and similarities with Euclidean Fourier analysis, each con-

structed picture of the projective Fourier analysis includes the Fourier transform,

Plancherel’s theorem and convolution property. Projectively covariant characteris-

tics of the analysis in the noncompact picture allow rendering any of image projec-

tive transformations of a pattern (after removing conformal distortions) by using

only one projective Fourier transform of the original pattern, what is demonstrated

in a computer simulation. The convolution properties in both pictures must by

used to develop algorithms for projectively-invariant matching of patterns. Work

in progress on fast algorithms for computing with projective Fourier transforms

and for rendering image projective transformations is discussed. Efficient com-

putations of the convolutions would follow from the both fast projective Fourier

transforms and their inverses.

KEYWORDS: Conformal camera, projectively invariant pattern classification,

projective Fourier analysis, projectively covariant pattern representation.
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1 Introduction

A visual system for image understanding and pattern analysis should be built
upon some data structure representing visual inputs and algorithms storing
and processing visual information which are well adapted to image transfor-
mations produced by different perspectives between objects and the imaging
system. However, the most frequently used such data structures are based
upon Fourier or wavelet analyses and, therefore, they are lacking projectively
covariant characteristics. For example, although one can reconstruct a pat-
tern that is rotated and translated in an image plane using only one Fourier
transform of the original pattern, when image projective transformations are
applied, this is no longer feasible.
Motivated by this deficiency, persisting in spite of substantial work, see

[1, 2, 3, 4, 5, 6, 7, 8, 9], see also [10] for a more general context, we have
developed the projective analogue of Fourier analysis for patterns [11, 12, 13].
This Fourier analysis has been constructed upon the semisimple Lie group
SL(2,C), the double cover of the projective group for patterns PSL(2,C),
employing the mathematical framework (group representation theory) of
Fourier analysis on groups [14]. It has been done in the noncompact picture
[11] and the compact picture [13, 15], both pictures used to study irreducible
representations of semisimple Lie groups [16]. Also, the discrete projective
Fourier transform in the noncompact picture has been developed [12].
In this article we present an exposition of both pictures of projective

Fourier analysis based on the similarity with Euclidean Fourier analysis; each
picture is complementing the other in the same way the classical Fourier
analysis and spherical Fourier analysis complements each other in making
up Euclidean Fourier analysis. It provides a more intuitive exposition of
this highly abstract and technical subject. For the precise definitions and
mathematical proofs of results on projective Fourier analysis we refer to [11,
13] where also detailed expositions of the related projective geometry have
been given.
We demonstrate (carefully avoiding technicalities but at the same time

giving enough mathematical background) that in each picture the inverse
projective Fourier transform decomposes the pattern’s intensity function in
terms of the irreducible unitary representations of the related subgroup of
the projective group, with the coefficients given by the corresponding Fourier
transform. Because irreducible representations are the simplest transforma-
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tions that mirror the corresponding subgroup operation, the analysis pos-
sesses projectively covariant characteristics, which should be efficiently im-
plemented. In fact, we discuss the author’s work in progress on numerical
implementations of the analysis for problems in projectively covariant image
processing. The inverse projective Fourier transform in noncompact picture
allows the reconstruction of any projective distortions of a pattern from only
one projective Fourier transform of the original (undistorted) pattern, what
is demonstrated in a computational test. Moreover, the convolution prop-
erties in both pictures are needed to develop projectively invariant pattern
matching. It follows from the fact that the convolution in the noncompact
picture is defined over the subgroup consisting of translations in the optical
axis direction and rotations in the image plane of a camera, whereas the con-
volution in the compact picture is defined over the subgroup of all rotations
of a camera, and both subgroups together generate the projective group.
The paper is organized as follows. The next section reviews the pro-

jective camera model which identifies the projective group for patterns and
provides their projectively-invariant classification. In Section 3 the projec-
tive harmonic analysis in noncompact picture is presented which is followed
in Section 4 by the development of the discrete projective Fourier transform
in this picture. Next, in Section 5 the compact picture of the projective har-
monic analysis is constructed. Section 6 contains discussions of the confor-
mal camera model upon which the projective harmonic analysis is developed,
its applications to image processing problems, and computer simulations of
the image perspective transformations of a ring pattern. Also, this section
presents some preliminary results on developing fast algorithms for computa-
tions with projective Fourier transforms and for rendering image projective
transformations of patterns. The last section summarizes the paper.

2 The projective group for patterns

2.1 The PSL(2,C)-camera
The pinhole, or optical center, of a camera is located at the center of a
planar projection. This is the point where the incoming rays of light intersect
each other, giving images on an image plane. We let the plane x2 = 1 in
R3 = {(x1, x2, x3)t | xi ∈ R} be the image plane and the optical center be
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located at the origin. (Here “t” stands for the transpose.) That is, the image
points are given by the projection j : R3 → C,

j
¡
(x1, x2, x3)

t
¢
=

x3 + ix1
x2

(1)

where in the image plane we have identified points (x1, 1, x3)
t with complex

numbers z = x3 + ix1.
A pattern as a planar object “lives” on the image plane, the image pro-

jective transformations of which are generated by translating the pattern or
rotating its projection on the unit sphere S2(0,1,0) centered at (0, 1, 0) to form

its “virtual” position, and then projecting them by j in (1) back into the
image plane, and by all finite iterations of these basic distortions, see Figure
1.
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Fig. 1. Image projective transformations generated by translations and
rotations in the camera model upon which the projective Fourier analysis is
constructed. Note that rotations introduce conformal distortions; see the

text for a full discussion.
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The choice of the unit sphere S2(0,1,0) is implied by the geometry of the
camera, i.e., the choice of the image plane and the optical center.
In order to find the projective group generated in this way, we start by

choosing Euler’s angles (ψ, φ, ψ0) where ψ rotates about the x2-axis followed
by the angle φ rotation about the direction of the x3-axis, and finally the
angle ψ0 rotation again about the rotated x2-axis. We have shown in [11]
that for rotations R = R(ψ, φ, ψ0) ∈ SO(3) acting on S2(0,1,0), there are two
elements k ∈ SU(2) ⊂ SL(2,C) given by

k = ±
µ
cos
¡
φ
2

¢
e−i(ψ+ψ

0)/2 i sin
¡
φ
2

¢
e−i(ψ−ψ

0)/2

i sin
¡
φ
2

¢
ei(ψ−ψ

0)/2 cos
¡
φ
2

¢
ei(ψ+ψ

0)/2

¶
(2)

such that j ◦ R ◦
³
j|S2

(0,1,0)

´−1
= k and k’s are acting on the image plane C

by linear-fractional transformations

k · z =
cos
¡
φ
2

¢
ei(ψ+ψ

0)/2z + i sin
¡
φ
2

¢
ei(ψ−ψ

0)/2

i sin
¡
φ
2

¢
e−i(ψ−ψ0)/2z + cos

¡
φ
2

¢
e−i(ψ+ψ0)/2

. (3)

Here, SL(2,C) is the group of 2 × 2 complex matrices of determinant one
and SU(2) is its compact subgroup of matrices of the form

¡
α β
−β α

¢
. Also,

“◦” denotes the composition of maps.
Similarly, there is a one-to-two correspondence between almost all trans-

lations b ∈ R3 of image points x and the elements h ∈ SL(2,C) of the form¡
α 0
γ α−1

¢
, γ ∈ C and α = δ or α = iδ with δ > 0, such that one has

j(x + b) = h · j(x) where h is acting on C by the linear-fractional transfor-
mation h · z = (α−1z + γ)/α. In fact,

h = ±
Ã

(1 + b2)
1/2 0

(b3 + ib1) (1 + b2)
−1/2 (1 + b2)

−1/2

!
(4)

if and only if b = (b1, b2, b3)
t with b2 6= −1. It implies the factorizations:

h ∈ AN if 1 + b2 > 0 and h = εAN if 1 + b2 < 0, where

N =

½µ
1 0
γ 1

¶
| γ ∈ C

¾
, A =

½µ
δ 0
0 δ−1

¶
| δ ∈ R+

¾
, ε =

µ
−i 0
0 i

¶
.

From the discussion given above, it follows that the subgroup SU(2)
acting by linear-fractional transformations on the image plane C represents
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image projective transformations of patterns (plus conformal distortions, see
the end of this subsection) produced by rotations in a camera, with the max-

imal torus in SU(2),M =
n¡

eiψ 0
0 e−iψ

¢o
, representing rotations in the image

plane. Further, the subgroups A and εA represent image transformations
produced by translations of a camera in the direction of its optical axis.
In conclusion, the factorization SL(2,C) = SU(2)ASU(2), see [16], and

the fact that both ±k (and ±h) have the same action by linear-fractional
transformations, imply that the projective group for patterns is the group
PSL(2,C) = SL(2,C)/{±I}. This is the quotient group of SL(2,C) ob-
tained by identifying matrices that differ by sign.
Thus, for given patterns

P = {f : D→ R}, (5)

their orbits

PSL(2,C) 3 g 7−→ Pg = {f ◦ g−1 : gD→ R} (6)

provide projectively-invariant classification of images as each orbit contains
almost all perspectively distorted patterns such that two patterns that are
on different orbits are not related by a perspective transformation. We refer
to this camera model as the PSL(2,C)-camera.
Although Pg “inherits” the intensity of P at the corresponding points,

i.e., f 0(ξ0) = f(ξ) where ξ0 = g · ξ and f 0 = f ◦ g−1, this camera model
exhibits a “conformal lens optics”. Therefore, this projective camera model
is referred to also as the conformal camera. We proceed next to verify this
claim but its comprehensive discussion is postponed until Section 6. To this
end, we recall that a pattern on the image plane is first projected on the
sphere S2(0,1,0), which is next rotated by the action of SO(3) and finally is
projected back on the image plane, giving the image perspective transforma-

tion: j ◦R ◦
³
j|S2

(0,1,0)

´−1
(z) = k · z, cf., Figure 1. This image transformation

of a pattern is conformal (i.e., it preserves angles) since the linear-fractional
transformations are conformal. In conclusion, this camera model while be-
ing a useful starting point, needs a calibration to remove these conformal
distortions. This is discussed in Section 6.
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2.2 Projective Fourier analysis

Any point of the image plane can be identified with the point of C2 =n¡
z1
z2

¢
| z1 = x2 + iy, z2 = x3 + ix1

o
where the complex line z2 = µz1 in-

tersects the line z1 = 1. Thus, the point x3 + ix1 of the image plane
is identified with the slope µ of the line. We note that the complex line
x3+ix1 = (µ1+iµ2)(x2+iy) with y = 0 corresponds to the line (the ray) in R3
passing through the origin and having the direction vector hµ2, 1, µ1i. Now,
a group element g =

¡
a b
c d

¢
∈ SL(2,C) acting on nonzero vectors

¡
z1
z2

¢
∈ C2

induces the action on slopes of the lines z2 = µz1 given by µ 7−→ µ0 = dµ+c
bµ+a

.

Consequently, SL(2,C) is acting on the extended image plane bC = C ∪
{∞} , where the point ∞ corresponds to the line z1 = 0, by linear-fractional
transformations (this action agrees with the action in (3)) given by

z 7−→
µ
a b

c d

¶
· z = dz + c

bz + a
, ∞ 7−→

µ
a b

c d

¶
·∞ =

c

a
. (7)

Therefore, the extended image plane bC can be identified with the complex
projective line P 1(C) = {lines in C2 passing through the origin} where the
group of projective transformations (or, homographs of the projective line)
is PSL(2,C) = SL(2,C)/{±I}. We note that this group is the same as
the projective group for patterns derived in the conformal camera model.
Further, the stereographic projection j|S2

(0,1,0)
(with j given in (1)) from the

unit sphere centered at (0, 1, 0)t, with the west pole (0, 0, 0)t projected into

∞, shows that bC ∼= S2(0,1,0).
The projective (conformal) camera model and the framework of Fourier

analysis on groups imply that the projectively covariant harmonic analysis
should be developed upon the irreducible unitary representations of the group
SL(2,C) as the basic building blocks of this analysis.
We now follow [14] to give a nontechnical explanation of this point. In-

formally, an irreducible representation of a (topological) group G is a group
homomorphism T (with some continuity requirements) between G and the
group of bounded linear operators on a complex Hilbert space V , such that
the mapping T cannot be “broken up” into a direct sum of “smaller” homo-
morphisms. Intuitively, we can say that the composition of those bounded
linear operators mirrors the group operation in G. In fact, all such inequiv-
alent representations (of G in terms of those linear operators) consist of the
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simplest possible and complete set of building blocks of harmonic analysis
on G.
Thus, this framework provides desired projectively covariant representa-

tions of images if G = SL(2,C)–the projective group for patterns.
We note that representations are unitary if the operators are unitary. It

is well-known that if G is abelian then the operators are one-dimensional
(i.e., they are the characters of G), and if it is a compact group then the
operators are finite-dimensional (i.e., matrices). If the Hilbert space V is
infinite-dimensional, the representation is infinite-dimensional.
All the unitary representations of the semisimple Lie group SL(2,C) are

infinite-dimensional [17] and they are constructed in different realizations on
the spaces of homogeneous functions on C2, giving different pictures of the
projective harmonic analysis. Two such realizations are fundamental in our
work. The first one, referred to as the “noncompact picture”, is the restriction
of the analysis to the affine patchC of bC. The second realization, referred to as
the “compact picture”, is obtained by working on the unit sphere S2 (which is

isomorphic to bC). The homogeneity of the functions on C2 implies that both
restrictions are one-to-one. The reference [17] contains a discussion of these
realizations. In the case of Euclidean group, the corresponding restrictions
to the noncompact and compact pictures result in the classical and spherical
Fourier analyses, respectively, both making up Euclidean Fourier analysis,
see [18].
In a more recent approach (which extends to other semisimple Lie groups)

the irreducible unitary representations of SL(2,C) are induced in a one-to-
one way from the Borel subgroup B =MAN where N = N

t
(the set of all

transpose matrices ofN whereN is given in Section 2.1). This, the so-called,
induced picture is based on the two decompositions of SL(2,C). The first
one that is given by

SL(2,C) = NB∪pB, p =

µ
0 1
−1 0

¶
(8)

implies Gauss decomposition

SL(2,C) .
= NB, (9)

where “
.
=” means that the equality holds up to a set of measure zero. The
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second one is Iwasawa decomposition

SL(2,C) = SU(2)AN. (10)

The one-to-one restrictions of the unitarily induced representations to the
subgroups N and SU(2) result in the noncompact and compact pictures,
respectively. A well-motivated survey of this approach can be found in [16].

3 Projective harmonic analysis in noncom-

pact picture

3.1 Noncompact picture

Recall that the noncompact picture of projective Fourier analysis can be con-
structed by restricting toN ∼= C the unitary representations of SL(2,C) that
are unitarily induced from the finite-dimensional irreducible representations
of the Borel subgroup B =MAN. It follows from Gauss decomposition (9)
that this Borel group B exhausts the projective part of SL(2,C) since N de-
scribes translations in the image plane (which gives the isomorphism N ∼= C
mentioned before at the beginning on this section).
It is well-known that the finite-dimensional irreducible unitary represen-

tations of the Borel subgroup B are one-dimensional. Indeed, they all are
given by the irreducible unitary representation T k,is; k ∈ Z, s ∈ R, acting on
the Hilbert space C by T k,is(b)ξ = πk,s(b)ξ where

πk,s(b) =

µ
z

|z|

¶k

|z|is for b =

µ
z β
0 z−1

¶
(11)

are called the Borel characters. These representations can be obtained by

extending to B the characters πk,s : MA → C, πk,s
¡¡

z 0
0 z−1

¢¢
=
³

z
|z|
´k
|z|is.

Also, because MA ⊂ SL(2,C) is topologically isomorphic with the multi-
plicative group of nonzero complex numbers C∗, πk,s(z) =

³
z
|z|
´k
|z|is are the

characters of the group C∗.
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3.2 Projective Fourier analysis on L2(C)
The classical (Euclidean) Fourier transform on L2(R2) is defined in terms of
the characters γk : R2 → C, γk(x) = eik·x; k ∈ R2, of the translation (abelian)
subgroup R2 of Euclidean (semidirect product) group SO(2)×R2. Similarly,
the projective Fourier transform in noncompact picture is defined in terms
of the characters of the abelian subgroupMA ∼= C∗, and therefore, in terms
of the finite-dimensional irreducible unitary representations of the subgroup
B of SL(2,C) (recall Section 3.1). For a given intensity function f(z) in (5),
its projective Fourier transform is defined as follows

bf(k, s) = i

2

Z
f(z)

µ
z

|z|

¶−k
|z|−is−1dzdz (12)

where the extra factor |z|−1 unitarizes the transformation. We note that if
z = x+ iy, then (i/2)dzdz = dxdy.
We have obtained in [11] the inverse projective Fourier transform in this

picture,

f(z) = (2π)−2
∞X

k=−∞

∞Z
−∞

|z|is−1
µ

z

|z|

¶k bf(k, s)ds, (13)

and the corresponding Plancherel theorem which says that for f ∈ L2(C) we
have ||f ||2 = ||| bf ||| where ||f ||22 = i

2

R
C |f(x)|2dzdz and ||| bf |||2 = R | bf(k, s)|2dω

with the measure dω given byZ
F (k, s)dω = (2π)−2

∞X
k=−∞

∞Z
−∞

F (k, s)ds.

We mention that by Plancherel’s theorem both the transform and its inverse
extend to the space of square-integrable functions and therefore the state-
ments such as “the equality holds up to a set of measure zero” made for (9)
are acceptable.
The convolution in noncompact picture is defined on the subgroup MA

by

f1 ∗ f2(z) =
i

2

Z
f1(g

−1 · z)f2(ξ)
dξdξ

|ξ|2 (14)

10



where

g =

µ
δ−1/2e−iϕ/2 0

0 δ1/2eiϕ/2

¶
and ξ = δeiϕ.

Taking the projective Fourier transform of the convolution (14) and chang-
ing the variable by η = ξ−1z, we easily obtain the convolution property:

\f1 ∗ f2(k, s) = bf1(k, s) bf2(k, s).
4 Discrete Projective Fourier Transform in

Noncompact Picture

On introducing ξ = eu+iθ, where r = eu and θ are polar coordinates, into
(12), we express this integral as the standard Fourier integral

bf(k, s) = ∞Z
−∞

2πZ
0

euf(eu+iθ)e−i(us+θk)dθdu. (15)

Then, we take the set Ds = [0, T ]× [0, 2π/L] as the domain of the function
g(u, θ) = f(eu+iθ)eu and extend periodically the function in the u-coordinate
by g(u+mT, θ) = g(u, θ) where m ∈ Z. This implies the following condition
on the extension;

f(eu+mT+ikθ) = f(eu+ikθ)e−mT .

Next, we define the function h by h(ϑ, γ) = g(u, θ) = g(ϑT
2π
, γ
L
) which is

2π-periodic with respect to both variables ϑ and γ, and therefore, it can be
expanded in a double Fourier series. Expressing this series in terms of g(u, θ)
rather than h(ϑ, γ), we obtain (see [12]),

bf(2πm/T, nL) =

TZ
0

2π/LZ
0

g(u, θ)e−i(2πmu/T+nθL)dθdu (16)

and

g(u, θ) =
L

2πT

∞X
m=−∞

∞X
n=−∞

bf(2πm/T, nL)ei(2πmu/T+nθL). (17)
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Further, we approximate the integral in (16) by a double Riemann sum,

M−1X
k=0

N−1X
l=0

2πT

LNM
g(kT/M, l2π/LN)e−2πi(mk/M+nl/N),

where the interval [0, T ] is divided intoM subintervals by points uk = kT/M
(k = 0, ...,M − 1) and the interval [0, 2π/L] into N subintervals by points
θl = l2π/LN (l = 0, ..., N − 1).
Finally, defining fk,l by

fk,le
kT/M =

2πT

LNM
g(kT/M, l2π/LN)

and bfm,n =
M−1X
k=0

N−1X
l=0

fk,le
kT/Me−2πi(km/M+ln/N)

(which is doubly periodic with period (M,N): bfm+M,n+N = bfm,n) and intro-

ducing the relation zm,n = emT/Mei
2πn
LN = rme

iθn, we arrive at

bfm,n =
M−1X
k=0

N−1X
l=0

fk,l

µ
zk,l
|zk,l|

¶−nL
|zk,l|−i2πm/T+1 (18)

and

fk,l =
1

MN

M−1X
m=0

N−1X
n=0

bfm,n

µ
zk,l
|zk,l|

¶nL

|zk,l|i2πm/T−1 (19)

for functions fk,l satisfying fk+mM,l+nL = fk,le
−mT where m, n ∈ Z.

The expressions in (18) and (19) are called the (M,N)-point discrete
projective Fourier transform and its inverse, respectively.

5 Projective harmonic analysis in compact

picture

5.1 Compact picture

Iwasawa decomposition (10) implies that

SL(2,C)/B ∼= SU(2)/M. (20)
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where B =MAN is the Borel subgroup. The compact picture is referred
to harmonic analysis of patterns restricted to the subgroup SU(2) which is
acting on its homogeneous space SU(2)/M. By (8), SU(2)/M is isomorphic
to P 1(C), and hence also to S2(0,1,0).
Further, recalling that SU(2) is the universal double cover of SO(3) (cf.,

[11]) and using Euler’s angle parametrization of SU(2), we have the diagram

SU(2)
Φ→ SO(3)

π1 ↓ ↓π2
P 1(C) σ→ S2(0,1,0)

(21)

where π1 is the projection onto the quotient space SU(2)/M ∼= P 1(C), π2 is
the projection onto SO(3)/SO(2) ∼= S2(0,1,0) and Φ (k(ψ, φ, ψ0)) = R(ψ, φ, ψ0)

with k(ψ, φ, ψ0) given in (2). Also, the mapping σ =
³
j|S2

(0,1,0)

´−1
is the

inverse of the stereographic projection of the unit sphere S2(0,1,0) onto the
plane x2 = 1, given explicitly by

σ(z) =

µ
2 Im z

|z|2 + 1 ,
2

|z|2 + 1 ,
2Re z

|z|2 + 1

¶t

(22)

where Im z and Re z stand for the imaginary and real parts of z, respectively.
Now, one can verify, see [13], that the homomorphisms Φ and σ in (21)

satisfy Φ(k) ◦ σ = σ ◦ k with both sides acting on P 1(C). This is used in the
next section to formulate projective Fourier analysis in the compact picture
by taking the pull back of spherical Fourier analysis by (Φ, σ) in the diagram
(21).

5.2 Projective Fourier analysis on L2(C, 2i
(1+|z|2)2dzdz)

From the homomorphism Φ in (21) and spherical harmonic analysis (for
example, see [19]), it follows that the irreducible unitary representations of
the group SU(2) on L2 (SU(2)/M) are R(l) = T (l) ◦ Φ; l ∈ N, where T (l)
is the irreducible unitary representation of SO(3) of dimension 2l + 1. (It is
well-known that the representation R(l) of SU(2) defines the representation
T (l) of SO(3) by means of formula T (l) ◦Φ = R(l) if and only if l is a natural
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number.) We recall from spherical harmonic analysis that in the orthonormal
basis {Y m

l ; l ∈ N,−l ≤ m ≤ l} of spherical harmonics,

Y m
l (ψ, φ) = (−1)m

s
(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cosφ)e

imψ, (23)

where Pm
l are the associated Legandre polynomials [19], the sum on the right

hand side in

T (R)Y m
l =

X
|k|≤l

Y k
l T

(l)
k,m(R) (24)

provides the decomposition of the regular representation T (R)f(ω) = f(R−1ω)

into irreducible unitary representations T (l)(R) =
³
T
(l)
m,n

´
(R). Here, for R

= R(ψ, φ, ψ0) ∈ SO(3), T (l)m,n = e−imψt
(l)
m,n(cosφ)e−inψ

0
with t

(l)
m,n related to

Jacobi polynomials [19]. In particular,

T
(l)
m,0 =

r
4π

2l + 1
Y

m

l (25)

are the spherical functions.
Thus, the harmonic decomposition of functions on P 1(C) ∼= SU(2)/M

will be given with respect to, what we call, the projective harmonics Zm
l =

Y m
l ◦ σ, explicitly given by

Zm
l (z) = (−1)m

s
(2l + 1)(l −m)!

4π(l +m)!
Pm
l

µ
1− |z|2
1 + |z|2

¶
eim arctan( Im z

Re z ).
(26)

To this end, we first note that from (2) we have the factorization k =
m (ψ/2) t (φ/2)m (ψ0/2) where

m (ψ/2) =

µ
eiφ/2 0

0 e−iφ/2

¶
and

t (φ/2) =

µ
cosφ/2 i sinφ/2

i sinφ/2 cosφ/2

¶
.
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Then, one can easily check that the subgroup M of elements m (ψ/2) fixes
the point 0 and its action on the image plane C consists in rotations of
angle ψ about the origin, and the subgroup T of elements t (φ/2) moves the
point 0 of C along the positive imaginary axis for 0 ≤ φ < π. It provides
the parametrization z = tan φ

2
eiψ of the image plane by polar coordinates

expressed in terms of the Euler angles. Now, the pullback by the mapping σ :
C→ S2(0,1,0) of the rotational-invariant measure dω = sinφdφdψ on the unit

sphere is the SU(2)-invariant measure dp := σ∗(dω) = 2i (1 + |z|2)−2 dzdz
on C. To this end, we observe that if z0 = g−1 · z where g =

¡
a −b
c d

¢
∈ SU(2)

then, dz0dz0 = |bz+a|−4dzdz. Next, we verify 1+|z0|2 = |bz+a|−2(1+|z|2). It
implies (1 + |z0|2)−2 dz0dz0 = (1 + |z|2)−2 dzdz, which is the desired invariance
property.
Choosing the basis of 2l + 1 spherical harmonics Y m

l ; −l ≤ m ≤ l, for
each l ≥ 0 gives an orthonormal basis Zm

l (z); −l ≤ m ≤ l, for all of L2(C, dp)
and in analogy with the harmonic analysis on L2 (SO(3)/SO(2)), we obtain
the projective harmonic decomposition of f ∈ L2(C, dp) in the form

f(z) =
X
l∈N

X
|m|≤l

bf(l,m)Zm
l (z) (27)

where the coefficients bf(l,m) of the decomposition are given by the Fourier
transform

bf(l,m) = Z f(z)Z
m

l (z)2i
¡
1 + |z|2

¢−2
dzdz. (28)

We call (28) the projective Fourier transform in compact picture. Its
inverse transform is given in (27). The next theorem [13] summarizes the
projectively covariant characteristics of the harmonic decomposition in the
compact picture.

Theorem 1 The decomposition

f(z) =
X
l∈N

X
|m|≤l

bf(l,m)Zm
l (z)

under the projective transformation R(g)f(z) = f(g−1 · z), g ∈ SU(2) trans-
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forms as follows

R(g)f(z) =
X
l∈N

X
|k|≤l

X
|m|≤l

bf(l,m)R(l)m,k(g
−1)

Zk
l (z) (29)

where for each l ∈ N

R(l)(g) =
³
R
(l)
m,k(g)

´
=

³
T
(l)
m,k ◦Φ(g)

´
is the irreducible unitary representation of SU(2) on the Hilbert space W l =
{Zm

l (z) : l ∈ N,−l ≤ m ≤ l} with the inner product

hf, hi =
Z

f(z)h(z)2i
¡
1 + |z|2

¢−2
dzdz.

The Plancherel theorem takes on here the following form,

||f ||2L2(C,dp) =
∞X
l=0

lX
k=−l

| bf(l, k)|2,
which says that the mapping f(z) 7−→ bf(l, k) is isometric with respect to
the corresponding norms. It follows directly from the definition of projective
harmonics and the Plancherel theorem in spherical harmonic analysis.
For two functions f1 and f2 on C the operator of left convolution by f1 is

defined by

Cf1f2(z) =

Z
SU(2)

f1(g · 0)T (g)f2(z)dg

=

Z
SU(2)

f1(g · 0)f2(g−1 · z)dg

= f1 ∗ f2(z). (30)

Since the operatorsR(g) are simultaneously block diagonalized for all g ∈
SU(2) in the projective harmonic basis Zm

l (because T (l) are simultaneously
block diagonalized in the basis Y m

l ), the convolution operator Cf1 obtained as
their linear combination must be block diagonalized as well. More explicitly,
we have the following result [13] (which can also be proved along the same
lines for right convolution).
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Theorem 2 The convolution property

\f1 ∗ f2(l,m) = 2π
µ

4π

2l + 1

¶1/2 bf1(l,m) bf2(l,m). (31)

6 Numerical test and conclusions

There are two distinct approaches for representing images in machine vision;
the geometric way and the imaging way. The former uses geometrical primi-
tives such as lines, polygons or splines to represents shapes and extract invari-
ants. The latter, on the other hand, deals with arrays of numbers–discrete
samples of pixels–that are coming often from non-geometrical sources such
as digitized satellite photographs or X-radiographs. Of course, both ap-
proaches are interrelated since one can extract geometrical data from sampled
data. However, it introduces thresholding artifacts that are highly undesir-
able in many situations such as medical diagnostic imaging, for example.
The cameras used in computational vision belong to the geometric ap-

proach. On the other hand, the PSL(2,C)-camera model constructed in this
work, which justifies the word “projective” in the case of planar objects (i.e.,
patterns), belongs to the imaging approach.
Nevertheless, this camera introduces conformal distortions of image per-

spective transformations. To see this, we recall from Section 2.1 that j ◦
R ◦

³
j|S2

(0,1,0)

´−1
= k ∈ SU(2) implies that a pattern on the image plane

x2 = 1 is first projected by
³
j|S2

(0,1,0)

´−1
(the inverse of stereographic pro-

jection with j given in (1)) into the sphere S2(0,1,0) which then is rotated by

R(ψ)R(φ)R(ψ0) ∈ SO(3) and finally projected back into the image plane,
recall Figure 1. For example, taking the line segment in the image plane

along the x3-axis from (0, 1, 0) to (0, 1, 1) and applying j ◦R◦
³
j|S2

(0,1,0)

´−1
to

it, where R = R(ψ)R(φ)R(ψ0) with ψ = ψ0 = 0 and φ = π
2
, the image of this

line segment produced this way is the unit circle circumference segment. The
reader should consult Figure 1 to see that it is the case. In order to render
image perspective transformations of a pattern as produced by this camera,
one must remove those distortions. These are in fact conformal distortions,
i.e., distortions preserving angles, since stereographic projections and linear
fractional transformations are conformal mappings [20].
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This “conformal lens” problem of the PSL(2,C)-camera is somewhat
similar to the problem of the absence of optical lenses in a pinhole camera.
This camera model, while being a useful starting point in computational
vision, needs ex posto facto calibration to account for effects of optical lenses
of imaging systems, see [21]. In fact, a real lens of optical system does
not produce a uniform mapping across the field of view. There are radial
distortions which become more severe with radial distance from the principal
point, the point where the optical axis intersects the image plane.
Moreover, the PSL(2,C)-camera model can develop also some artificial

global (topological) effects as far as image perspective transformations of
planar objects are considered. One can easily get the idea of such problems
by taking a thin ring pattern of inner radius equal to, say, 1 and its center
at the origin and applied the inversion transformation z 7−→ 1

z
to it (φ = π

and ψ = ψ0 = 0 in (3) ), the transformation that is gluing to copies of
C to produce P 1(C), see [11]. This image transformation interchanges the
outer and inner boundaries of the ring pattern. Of course, the image plane
C and the Riemann sphere bC have different topological characteristics and
such effects should not be totally unexpected.

6.1 Rendering image perspective transformations

The image projective transformations (6) can be rendered by calculating only
the projective Fourier transform of the intensity function f of the original
pattern (5) as follows. If z0 = g−1 · z, g ∈ SL(2,C), then by (13) we have

f(g−1 · z) = f(z0)

= (2π)−2
∞X

k=−∞

∞Z
−∞

bf(k, s)µ z0

|z0|

¶k

|z0|is−1ds. (32)

where bf(k, s) is the projective Fourier transform of f(z) and is given in (12).
In a numerical test (see [11, 13, 15] for more numerical tests), following the

method described in [11], we simulate projective distortions of a ring pattern
shown in Figure 2 (a). Image projective transformations of the pattern are
obtained by rendering (32) with

g =

µ
e−iψ/2 cos φ

2
ie−iψ/2 sin φ

2

ieiψ/2 sin φ
2

eiψ/2 cos φ
2

¶
∈ SU(2), (33)
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by running Maple’s procedure “densityplot” for the approximation

NX
k=−N

SZ
−S

|z0|is−1
µ

z0

|z0|

¶k bf(k, s)ds ≈ ∞X
k=−∞

∞Z
−∞

|z0|is−1
µ

z0

|z0|

¶k bf(k, s)ds
where

z0 = g−1 · z =
ze−iψ/2 cos φ

2
− ie−iψ/2 sin φ

2

−izeiψ/2 sin φ
2
+ eiψ/2 cos φ

2

(34)

and N = 120 and S = 220. This densityplot simulates the image “intensity”
function of the approximation which is treated as a function of the image
points z.
In Figure 2 (a) both φ and ψ in (33) are zero, which means that the

ring pattern shown there is rendered by using the inverse projective Fourier
transform (that is, it is a reconstruction problem). In (b) we render the
image projective transformation of the ring pattern by applying (33) in (34)
with φ = 45◦ and ψ = 60◦. Recalling the PSL(2,C)-camera model in Fig-
ure 1, one sees that this projective deformation is produced by rotating the
pattern’s projection on the sphere S2(0,1,0) by 45

◦ about the axis parallel to
the x3-axis and passing through (0, 1, 0), followed by the rotation about the
x2-axis by 60

◦ (the latter is just the rotation in the image plane). The fol-
lowing image projective transformations in (c) and (d) are produced in the
same way by the indicated Euler’s angles. The deformation in (e) is rendered
with the value of ψ as for the deformation in (d) in order to focus on the
effect of the deformation sequence passing through the point at infinity. The
last simulation in (h) shows the pattern obtained from the pattern in (a) by
applying the corresponding transformation z 7−→ 1

z
(recall the discussion in

the previous subsection). Thus, we have rendered the pattern’s image per-
spective transformations using only one projective Fourier transform of the
original pattern.
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(a)   φ = 0,   ψ = 0 (b)   φ = 45o,   ψ = 60o (c)   φ = 66.7o,   ψ = 120o 

(d)   φ = 94.7o,   ψ = 180o 

 

(e)   φ = 100o,   ψ = 180o  (f)   φ = 112.5o,   ψ = 240o 

 (g)   φ = 138.5o,   ψ = 300o (h)   φ = 180o,   ψ = 360o 

Fig. 2. Computer simulations of the image projective transformations of
the ring pattern reconstructed in (a). The discussion is given in the text.

6.2 On fast algorithms

The covariant characteristics are preserved by the discrete inverse transform
(19), as for any g ∈ SL(2,C)

f 0m,n =
1

MN

M−1X
k=0

N−1X
l=0

bfk,lµ g−1 · zm,n

|g−1 · zm,n|

¶nL

|g−1 · zm,n|2πkm/T−1,
(35)
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where f 0m,n =
2πT
LMN

f(g−1·zm,n) is the corresponding projective transformation

of the sampled values fm,n of the pattern f(zm,n) =
LMN
2πT

fm,n.
This transformation is expressed in (35) only in terms of the projective

discrete Fourier transform bfk,l of the original pattern fm,n that is given in
(u, θ)-coordinates by

bfk,l = M−1X
m=0

N−1X
n=0

fm,ne
ume−i2πkum/Te−iθnlL.

Here, rm = eum and (um, θn), where um = mT
M
and θn =

2πn
LN

, are equally

spaced points in the set D0 = [0, T ]× [0, 2π/L]. Thus [ bfk,l] can by computed
by applying 2-D FFT algorithms, see also [12].
How to compute efficiently the projectively distorted pattern f 0m,n, rep-

resented in (35) in terms of [ bfk,l]? To discuss this, we take a sampled point
zm,n = rme

iθn and recall (see (34)) that its image transformation is given by

z0m,n = g−1 · zm,n =
zm,n cos

φ
2
− i sin φ

2

−izm,n sin
φ
2
+ cos φ

2

.

One can check that under this transformation, the equally spaced points
(um, θn) transform into (u

0
m,n, θ

0
m,n) with the coordinates satisfying the equa-

tions

e2u
0
m,n =

eum cos2 φ
2
+ sin2 φ

2
− eum sinφ sin θn

eum sin2 φ
2
+ cos2 φ

2
+ eum sinφ sin θn

and

tan θ0m,n =
1/2(e2um − 1) sinφ+ eum sin θn cosφ

eum cos θn
.

In terms of (u0m,n, θ
0
m,n), (35) is now expressed by

f 0m,n :=
1

MN

M−1X
k=0

N−1X
l=0

bfk,le−u0m,nei2πu
0
m,nk/Teiθ

0
m,nlL.

However, equally spaced property of the sampled points has been destroyed.
It seems that the recent advances on irregular sampling theory [22, 23] allow
the development of such efficient algorithms.
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In the compact picture, the projective Fourier transforms and convolu-
tions might be efficiently calculated by adapting the fast algorithms devel-
oped in [19, 24] for spherical harmonic analysis. However, it might turn
out that the fast algorithms could be easier developed directly for projective
harmonics.
Then, algorithms for efficient computation of the convolutions in non-

compact and compact pictures would follow from the both fast projective
Fourier transforms and their inverses. This would be the basis for developing
projectively invariant pattern matching algorithms. To this end, we start by
recalling the pattern matching problems in Euclidean geometry. Firstly, the
two-dimensional convolution on the plane can by efficiently computed by the
(standard two-dimensional) FFT. By convolving an image with a pattern,
one can locate translated copies of the pattern in the image. Secondly, effi-
cient spherical convolution can be used for pattern matching with directional
data. The convolutions in both pictures of the projective Fourier analysis de-
veloped in this work involve the corresponding subgroups of the projective
group for patterns. In this way they should be useful in located patterns in
projectively transformed images, the process done effortlessly by people. It
is believed by the author that the efficient algorithms for computing projec-
tive convolutions can be used to develop a real time automated system for
pattern recognition independent of different perspectives between the planar
objects (i.e., patterns) and the imaging system.

7 Summary

The inverse projective Fourier transform in noncompact picture (13) pro-
vides the decomposition of patterns in terms of the characters of the (non-
compact and abelian) group C∗ ∼=MA ⊂ SL(2,C) (which are also all finite-
dimensional irreducible unitary representations of B =MAN, the subgroup
which exhausts the projective part of SL(2,C)) with the coefficients given
by the projective Fourier transform (12). On the other hand, the decompo-
sition in the compact picture (27) is given in terms of projective harmon-
ics (26), with the coefficients given by the corresponding projective Fourier
transform (28). Here the projective harmonics are the matrix elements of
finite-dimensional unitary representations (expressed in the orthonormal ba-
sis providing by these projective harmonics) of the (compact and nonabelian)
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subgroup SU(2) ⊂ SL(2,C), the universal double cover of the rotation group
SO(3).
Because the irreducible representations are the simplest operators that

mirrors the projective group operations, both decompositions provide pro-
jectively adapted pattern representations, computable by fast algorithms.
Moreover, the convolution in the noncompact picture is defined over the sub-
group consisting of translations in the optical axis direction (A) and rota-
tions in the image plane of a camera (M ⊂ SU(2)), whereas the convolution
in the compact picture is defined over the subgroup of all rotations of a cam-
era (SU(2)). Both subgroups together generate the projective group since
SL(2,C) = SU(2)ASU(2).
Also, fast algorithms for computing with discrete projective Fourier trans-

forms and for rendering image projective transformations could be developed
as demonstrated by the preliminary results. These algorithms can be applied
to the efficient computation of convolutions in both pictures. It should be
useful in developing perspectively invariant pattern matching, in a similar
way as the convolutions of Euclidean Fourier analysis have been used to
locate in images translated and rotated copies of a pattern.
Thus, both pictures of projective Fourier analysis provide the data struc-

ture for representing visual inputs, well-suited for developing algorithms for
storing and processing visual information, that can be used in automated
systems for perspectively independent pattern identification and recognition.
Acknowledgment. This work is supported in part by NSF grant CCR-
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